
60 The Delphi Magazine Issue 71

What’s New In Delphi 6?
Brian Long reviews the latest version of Borland’s finest

The wait is over and Delphi 6 is
here, so let’s start a journey

through the new features and capa-
bilities that have been added.

Our Delphi 6 examination is a
double-act: I’m going to look at
what’s new, and Dave Jewell fol-
lows in the next article with a look
at the cross-platform development
aspects of Delphi 6.

There are three flavours of
Delphi 6: more or less as before,
but the names are slightly differ-
ent. The most expensive is the
Enterprise Edition, then comes the
Professional Edition and cheapest
is the Personal Edition.

If you read Borland’s press
release about Delphi 6, you will see
that it focuses on a few high- profile
areas which, as usual, have been
subject to the marketing folks’
whims and been given snappy
names (pun unintended): BizSnap,
WebSnap and DataSnap. The idea
of these names is to suggest how
easy it is to assemble and complete
projects using these new technolo-
gies, but more on these shortly.

Whilst earlier versions of Delphi
had the emphasis on productivity
and performance, Delphi 6 focuses
its attention on scalability. Some of
the key areas in Delphi 6 are target-
ing e-Business applications, enter-
prise solutions and cross-platform
development. That’s not to say the
lone developer who writes data-
base applications has nothing to
look forward to here. As well as the
high profile features, there is a

whole raft of improvements and
additions.

Note that this review is based on
a pre-release version (although it
was very close to the final build) so
some things are susceptible to
change in the shipping version.

Now, without further ado, let’s
start looking at the new features,
firstly turning our attention to
those that Borland seems to be
pushing the hardest (and are found
only in the Enterprise Edition).

BizSnap
The tagline for this feature set is:
BizSnap Delivers Full Business-to-
Business Web Service Integration.
What this means, firstly, is that
Delphi now offers the ability to
create industry standard SOAP/
XML web services that can be used
by any application that knows how
to talk to web services. What it also
means is that you can create client
applications that make use of web
services. This allows Delphi appli-
cations to integrate with web ser-
vices enabled platforms such as
Microsoft’s .NET and BizTalk,
Sun’s ONE and Oracle’s .NOW.

Creating the web service is easy
enough. You implement the inter-
face that is to be made available,
but inherit from IInvokable.
IInvokable is much the same as
IUnknown but has runtime type
information (RTTI) generated for
itself and anything based upon it.

Once you have registered the
interface and the implementing

class with the invocation
registry, it becomes an
invokable interface. You
use a THTTPSoapDispatcher
from the new WebServices
page of the Component
Palette to pick up HTTP
SOAP messages, which are

then dispatched to a
THTTPSoapPascalInvoker compo-
nent, which uses the invokable
interface’s RTTI to directly call its
methods. A TWSDLHTMLPublish com-
ponent also allows WSDL docu-
ments, describing your available
web services, to be made available
to non-Delphi clients. Figure 1
shows what it generates for a
simple invokable interface called
IGeometry, defined with two meth-
ods: CircleArea and SphereVolume.

On the client side, you can
import a WSDL document using
the new web services Import
Wizard if the web service is not
written in Delphi. If it is a Delphi
server, you can simply share the
interface unit with the server. A
THTTPRIO component can be used
to generate statically-linked calls
to the web service’s remote inter-
faced object (RIO).

Another part of BizSnap is the
support for XML document manip-
ulation. The TXMLDocument compo-
nent represents an XML document
that can be read from a file, freshly
created, or made from a manufac-
tured string. You can read the doc-
ument, edit it, and save any
changes you make. You can also
use it to access the objects gener-
ated by the new XML Data Binding
Wizard (see Figure 2) which under-
stands XML data, DTDs and
schema files such as XSD and XDR
files). TXMLDocument supports using
external XML DOM Level 2 parsers
to analyse the XML document
(such as those from Microsoft or
IBM), meaning you aren’t locked
into a single vendor.

On the data access side, there
are a number of XML transform
components to help your applica-
tion use XML documents in lieu of
database servers. They convert to

➤ Figure 1: A sample
WSDL document from a
TWSDLHTMLPublish
component describing
a Delphi-written web
service.

Acronym Overload?
Check Brian’s Acronym
Glossary in the Delphi6

directory on this month’s
companion disk.

July 2001 The Delphi Magazine 61

and fro between client dataset data
packets and XML documents, and
rely on you defining the transfor-
mation between the two. An XML
mapping utility is provided on the
Tools menu to set up these trans-
formations.

According to Borland, this
no-nonsense web service and XML
support should allow you to
readily move your business into
the next wave of B2B e-commerce.

WebSnap
Whilst the old WebBroker support
for building web server applica-
tions is still there (and in fact has
been enhanced to support Apache
Web Server for Windows), it is now
accompanied by WebSnap (some-
times seen referred to as Site-
Express). WebSnap augments
WebBroker with new components,
wizards and views, that make it
easier to build web applications
that contain complex, data-driven,
web pages. WebSnap’s support for
multiple modules and for server-
side scripts also makes team
development easier. Server-side
scripting is available in JavaScript,
VBScript or any other ActiveScript
language you care to use.

Thanks to the WebBroker sup-
port, we already have dispatchers
that handle requests for page
content, HTML form submissions
and dynamic image requests.
WebSnap introduces new compo-
nents called adapters which pro-
vide a means to define a scriptable
interface to your application’s
business rules (for example,
TDataSetAdapter is used to make
dataset components scriptable).

WebSnap also gives us more pro-
ducer components to quickly build
complex, data-driven forms and

tables, or to use XSL to
generate a page. The
session component
allows your applica-
tion to keep track of
end-users and the
user list component
makes it easy to pro-

vide access to user names,
passwords and access rights.

The WebSnap web application
wizard quickly creates the building
blocks of an application with the
components that relate to your
requirements. There are also wiz-
ards available for rapidly creating
WebSnap data modules and page
modules. You can think of
WebSnap as taking over where
InternetExpress left off. Internet-
Express used scripts to provide
more flexible web pages that per-
mitted edited data and so on
(albeit using MIDAS at the same
time, which WebSnap doesn’t).

WebSnap provides much more
in the way of high-level facilities for
building functionality into a web
application. That said, because
there are lots of new components
(seventeen of them) on the WebSnap
Palette page, you may find the
learning curve quite steep (though
I’m assured that it’s also short).
You can see a simple WebSnap
data editing form in Figure 3.

In the same vein, Delphi 6 also
comes with a new web application
debug server for WebBroker and
WebSnap applications. This
expects to be run against web
server applications set up as COM
servers (you choose web app
debugger executable as opposed
to CGI, WinCGI etc). However, once
you have debugged your code, you
can readily shift all the web logic
into a real web application (just as
you can move ISAPI WebBroker
code into a CGI application).

The debug server lets you moni-
tor HTTP requests, responses and
response time and precludes the
need to install a web server on your
development machine. It emulates
the messages that would typically

be sent by a real web server,
thereby allowing you to easily
debug through your application
with the normal IDE debugging
facilities.

This new debugging tool is sup-
plied in both the Professional and
Enterprise Editions.

DataSnap
The old MIDAS acronym that lived
through Delphi 3, 4 and 5 has now
been superseded with the term
DataSnap (although the runtime
DataSnap DLL is still called
midas.dll). DataSnap is the natural
progression of MIDAS, which
allows client applications to talk to
application servers and exchange
data from any supported RDBMS,
in either proprietary binary format
or in XML. The communication
between client and server can be
made using COM/DCOM, CORBA
(IIOP), sockets (TCP/IP) or HTTP.
SOAP (HTTP and XML) is now
another option with the new
TSoapConnection component.

When building application serv-
ers, as well as Remote Data Mod-
ules (for DCOM and socket
access), Transactional Data Mod-
ules (historically called MTS data
modules, which now work with
COM+ as well) and CORBA Data
Modules (form CORBA connec-
tions) you can also use a Soap
Server Data Module. This would

➤ Figure 2:
The XML Data
Binding Wizard.

➤ Figure 3: A simple WebSnap
database record editing form.

62 The Delphi Magazine Issue 71

make a web service that happened
to be a DataSnap application
server.

DataSnap also includes a
number of additional components
that act as connection brokers.
TClientDataSet has a new
ConnectionBroker property that
can connect to one of these compo-
nents and the idea is to add an
extra layer of indirection in the
specification of a connection. For
example, this makes it simple to
use one connection at design-time
and another at runtime, just by
changing the Connection property
of the connection broker.

TLocalConnection acts like a con-
nection component for local pro-
viders (in the same application as
the client dataset). It allows you to
make use of the IAppServer inter-
face, simplifying the process of
scaling up to using a remote pro-
vider in an application server at
some later date. TSharedConnection
allows a client application to con-
nect to an application server that is
partitioned into multiple remote
data modules using a single con-
nection. Finally, TConnectionBroker
centralises the connection to an
application server of a set of client
datasets that all use the same
connection.

CORBA
If you are into CORBA you will
probably be aware of the updated
support for it made available for
Delphi 5 users some time in 2000.
This consisted of an IDL2PAS com-
piler being provided, as well as
some updated Delphi units to sup-
port it, allowing you to move away
from the Delphi 4 model of CORBA
support, which was inherently tied
also to its COM support.

Well, Delphi 6 has all this sup-
plied as standard. You can choose
to install VisiBroker 3.3 or 4 during
the installation and, depending on
which one you choose, appropri-
ate Delphi support is installed.
Both versions come with the event
and naming services.

There are new wizards for gener-
ating CORBA client and server
applications that use IDL2PAS to
do their job. The CORBA support
appears to now be very usable,

with the inclusion of IDL2PAS, and
CORBA developers should no
longer have to use the IDE’s COM-
oriented Type Library Editor.

One feature that will be of inter-
est to enterprise developers is that
Delphi applications can now inter-
face with Enterprise Java Beans
(EJBs), with the appropriate inter-
mediate software. Borland App-
Server 4.5.1 and later supports Sim-
plified IDL (SIDL), which makes
this kind of link possible.

IDE
Having gone through most of the
new features that are solely avail-
able in the Enterprise Edition, now
let’s pay some attention to things
that are available in other editions
as well. The new Delphi 6 IDE can
be seen in Figure 4. Even a quick
glance at it should reveal some of
the changes that have been made.

Firstly, the Data Module
Designer now looks like it did in
Delphi 4 (a simple container
for non-visual controls). Delphi 5
had enhanced it to include a
diagram page and a hierarchy
pane. Delphi 6 has stripped those
back away from the Data Module
Designer and made them usable by
any designer.

You can see the new Object
TreeView in the screenshot. This is
a general purpose hierarchy that
shows the logical relationships
between all components on data
modules, forms, frames and web
modules. By default it sits above
the Object Inspector, but can
always be brought to the
foreground with Shift+Alt+F11.

Also visible in the code editor
are some tabs right down the
bottom (rather like those used in
Delphi 1). These tabs switch
between different views on the cur-
rent file where applicable. The Code
tab obviously shows source code
and the Diagram tab (not in the Per-
sonal Edition) allows you to set up
and document relationships
between various components that
have been dragged from the
Object TreeView.

When developing WebSnap
applications, more tabs appear
that make it easy to see the result
of server-side script without run-
ning the application. The Preview
tab shows the page in an embed-
ded browser. The HTML Result tab
shows the generated HTML. The
XSL Tree and XML Tree tabs make it

➤ Figure 4: The Delphi 6 IDE.

64 The Delphi Magazine Issue 71

easier when working with XML and
XSL. If you open HTML or XML files
in the IDE, you again get extra tabs
to give alternate views on them.
These extra tabs (particularly the
WebSnap ones) are sometimes
referred to as surface designers.

The editor now has a key map-
ping for Visual Basic keystroke
emulation. It also has a new sample
key mapping (in a supplied demo
package) that emulates a subset of
the Emacs keystrokes.

Another change for the editor is
an update to Code Completion (see
Figure 5). The Code Completion
window (which can be invoked
with Ctrl+Space when it doesn’t
pop up automatically) is now
resizable. It also strips out any
methods that are used in property
read/write declarations, so that
you are encouraged to use the
property itself. As you type more
characters, the window dynami-
cally removes inappropriate
entries, effectively honing your
choice as you type. It works in unit
interface sections and uses
colours to highlight procedures,
functions, etc, making abstract
routines display as red.

Another change in the editor is
that the individual source file tabs
at the top can now be re-ordered
by dragging them around. Also,
right-clicking on them produces a
new context menu which allows
you to switch to any other open
editor file (visible in Figure 4). The
list of files in this menu can be
optionally sorted alphabetically.

Talking of popup menus, the one
on the Component Palette now
gives an alphabetically sorted
sub-menu of its pages, allowing
you to easily switch to a page that
is currently not visible on screen.
This is very handy, as there is still
no multi-line option and, with 25
pages available, you can only see

about half of them
without scrolling at
1024x768.

The main win-
dow’s menu bar has

a new Window menu to allow you to
switch between IDE windows with-
out resorting to the Window List
dialog (Alt+0). There’s also a
helper shortcut of Alt+End which
cycles through all the IDE windows
in turn.

The form designer now reacts
correctly to the Windows context
menu key (the one with the picture
of a popup menu on it). Moreover,
the form designer’s tooltip is much
more helpful by default. When you
pause your mouse over a non-
visual component it tells you the
name and type, as in Delphi 5. For
controls not inherited from
TWinControl it also gives the top left
position, height and width of the
control. TWinControl-based compo-
nents also report the value of their
TabStop and TabOrder properties.

All the options for the form
designer are now available in a sep-
arate Designer page of the environ-
ment options dialog, leaving more
space on the Preferences page,
which now has a welcome addition
to it. There is a new switch that
allows the auto-docking feature of
the IDE to be disabled. Normally, as
you drag windows around the IDE,
they tend to try and dock in any
other window that’s nearby
(unless you hold down Ctrl). With
the new option set, docking will not
occur unless you hold down Ctrl.

The Object Inspector hasn’t
been left out of the makeover. Its
instance list (the combobox at the
top) has been enhanced to display
the name and type of all compo-
nents in the list, and also displays a
tooltip with the same information
which helps with long component
names. When a component prop-
erty refers to another component
(an inline component), the inline
component can be expanded and
have its properties directly
accessed.

This can continue down a
number of levels as shown in
Figure 6. There, a TDBGrid compo-
nent has a reference to a data
source in its DataSource property,
which has been expanded to
reveal the data source compo-
nent’s properties. Similarly, the
data source’s DataSetproperty has
been expanded to show the prop-
erties available which include
DBConnection. This property also
refers to another component and,
again, that component’s
properties can be edited.

The same principle applies on
the Events page of the Object
Inspector. Note that the colours,
along with various other attributes
of the Object Inspector, can now
be customised on the Object
Inspector page of the environment
options dialog.

Some other useful IDE enhance-
ments include the support for envi-
ronment variables in directory
settings, and a dedicated page in
the environment options dialog for
viewing and overriding current
environment variable values. The
historic $Delphi pseudo-variable,
which could be used in path speci-
fications, can now have its default
value overridden here.

The final noteworthy IDE change
is to the File menu. As Figure 7
shows, File | New is now a sub-
menu that includes a number of
common items, as well as a means
of getting to the new items dialog.

Compiler
There have been various changes
made to the compiler since Delphi
5, some of which were made for
the benefit of Kylix, but which have
now propagated back into the
Delphi product. For example,
values in enumerated types can
now be explicitly assigned ordinal
values. The default behaviour is
that the first value in an enumer-
ated type has an ordinal value of 0,
and each successive one has an
ordinal value one higher.

C and C++ consider enumerated
type values to be integers and
allow you to override the default
compiler values, and now Delphi
can do this as well (although
Delphi still considers an integer

➤ Figure 5: Code
Completion in
Delphi 6.

July 2001 The Delphi Magazine 65

and an enumerated type value
rather different, due to its stronger
typing). Listing 1 shows a sample
enumerated type, with two explicit
ordinal values being assigned.
Because of the language rules, the
commented version shown is an
equivalent type definition. This
feature is very useful when you
need to interact with C or C++
libraries that use enumerated
types defined in this way.

The next change is that writable
typed constants are now disabled
by default (the equivalent of {$J-}
or {$WRITEABLECONST OFF}). Typed
constants allow you to set up struc-
tured constants with values, but
ever since the days of Turbo
Pascal, they haven’t actually been
constant. Delphi 2 added a com-
piler switch and compiler directive
that would prohibit any attempt to
assign to typed constants, but it
defaulted to the old behaviour
(where typed constants act like C
static variables).

The default now is to act as if
typed constants are actually con-
stant. The suggestion is to use
initialised non-local variables to
achieve the same effect. I gather
the RTL/VCL was scoured for
examples of using writable typed
constants, as their use is now
frowned on in Borland R&D.

To help with source code that
may be cross-platform, or perhaps
just used in several versions of
Delphi, there are several new ‘hint’
directives. The library directive
flags a dependency on a particular
library or component framework,

such as VCL or CLX. The depre-
cated directive indicates that an
item is obsolete or supported only
for backward compatibility.
Finally, the platform directive indi-
cates that an item is specific to a
platform (Windows, Linux, etc).

These directives can be applied
to any declaration (including that
of a unit), as shown in Listing 2.
Simply inserting these directives
has no effect until you refer to the
affected identifiers, which results
in compiler warnings saying the
referenced symbol is specific to a
library or platform, or deprecated.

These new warnings can be dis-
abled by turning off all warnings, or
toggled on or off individually with
the new $WARN compiler directive.
For example, {$WARN SYMBOL_LIB-
RARY OFF} disables warnings about
symbols that are library-specific.

Another new directive allows
you to link to C/C++ routines that
take variable numbers of argu-
ments (like printf and sprintf do).
You append the varargs directive
at the end of your import declara-
tion and simply declare all the
fixed parameters, as in Listing 3.

If you are writing code that may
be compiled on both Linux and
Windows, the new local directive
may help. This has no effect on
Windows, but routines compiled
into libraries (Linux shared mod-
ules) but which are not exported
are made more efficient by apply-
ing the local directive to them.

Talking of compiling for Linux
and Windows, you should also
know of the new MSWINDOWS condi-
tional symbol. Delphi 1 defined
WINDOWS for Win16, Delphi 2
through 6 defines WIN32 for Win32,
and when Win64 comes along, that
will cause another symbol to be
introduced. As of now, the new
MSWINDOWS symbol simply means a
Microsoft Windows platform. As a
side note, for code that may need
to be written differently for differ-
ent versions of the underlying com-
piler, the conditional symbol
VER140 has been defined (and is
also defined in Kylix 1).

Custom hints, warnings and
errors can now be generated from
your source with the new $MESSAGE
compiler directive. Listing 4 shows

the four levels of message you can
emit and, as you can see, an error
can either be non-fatal to the
compilation or fatal.

When building DLLs, you can
fully customise how the file name
will be built up using the
$LIBVERSION, $LIBSUFFIX and
$LIBPREFIX compiler directives (or
the equivalent options in the pro-
ject options dialog). For example,
all the runtime packages that are
supplied with Delphi have had the
version numbers removed from
the source files. This leaves com-
piled package files with names like
vcl.dcp. Thanks to a $LIBVERSION
directive, the actual binary pack-
age is called vcl60.bpl, but your
programs that link to it need not
know that. These directives were
added partially to solve the irrita-
tion of updating your runtime
package list each time you
upgrade to a new version of Delphi.

For those developers who are
writing specialist applications that
require custom bits set in their

➤ Figure 6: Expanded inline
component references.

➤ Figure 7:
The reorganised File menu.

66 The Delphi Magazine Issue 71

executable header, there are two
new directives that make the pro-
cess much more straightforward.
$SetPEFlags can be used to set flag
bits in the PE file header Character-
istics field whilst $SetPEOpt Flags
sets bits in the optional header
DLLCharacteristics field. You
should use these directives in your
project file and they can take an
integer expression, possibly made
by OR-ing constants from the Win-
dows unit (see Listing 5).

Perhaps the most useful
improvement in the area of direc-
tives is with the introduction of the
$IF and $IFEND directives with con-
stant expression evaluation. You
can build any expression as long as
it only relies on literal values and
constants that have already been

defined. You can test to see if a
symbol has been defined (as $IFDEF
does) with the new Defined intrin-
sic function, and you can check
whether an ObjectPascal constant
has been declared with the
Declared function. Listing 6 shows
a simple example of it in use.

If you want to use these new
directives in code that may be
compiled by older versions of
Delphi, you can wrap it up in $IFDEF
directives that check whether
CONDITIONALEXPRESSIONS is defined,
which it is in Delphi 6 and later.

The old built-in assembler,
BASM, has been laid to rest. It was
written in a non-portable fashion
and needed to be replaced by
something that would work in
Kylix. The Kylix and Delphi 6 inline
assembler is now called CHASM
and has been written with portabil-
ity in mind and has instruction

support for MMX, Enhanced MMX,
SIMD and Intel SSE for the Pentium
Pro, Pentium III, and Pentium 4
CPUs; and AMD Enhanced 3D for
AMD K7 CPUs. However, I should
mention that, if you are into this
sort of thing, you should note the
CPU window has not yet been
enhanced to understand the addi-
tional registers that can be refer-
enced by inline assembler code.

COM
COM support is not in the Personal
Edition of Delphi 6, but in the other
flavours we now have support for
COM+ in Windows 2000, including
neutral threading model support
and the ability to specify COM+
attributes in the Type Library
Editor. Delphi 5 offered MTS sup-
port in the Enterprise Edition only,
but Delphi 6 Professional Edition
offers the new Transactional
object support for both MTS and
COM+.

When making a new COM object
with the COM Object Wizard, just
as in C++Builder 5 you can elect to
have your object implement any of
the interfaces registered on your
system (see Figure 8). The wizard
will make sure your object has
stubs for all the methods in the
selected interface.

A new wizard has been added for
building COM+ event objects and a
new TCOMAdminCatalog component
appears on its very own COM+ page
of the Component Palette to allow
an application to act as an Automa-
tion controller for the COM+
administration tool.

Database
As in Delphi 5, database support is
also present only in the Profes-
sional and Enterprise Editions. Not
much has happened with the BDE
(now at version 5.1.1), although all
the BDE-related components have
been moved onto their own BDE
Palette page. So each of the three
individual data access mecha-
nisms from Delphi 5 now has a
dedicated Palette page: BDE, ADO
(for the dbGo components, or
ADOExpress as they used to be
called) and InterBase (for the
IBX, or InterBase Express compo-
nents). However, Delphi 6

type
TValues = (vRed, vOrange, vYellow, vGreen = 32,
vBlue, vIndigo, vViolet = 64);

//TValues = (vRed = 0, vOrange = 1, vYellow = 2,
// vGreen = 32, vBlue = 33, vIndigo = 34, vViolet = 64);

const
VCLVersion = 6 library;

var
Win32Version: Single platform;

function GetAutomatedSectionEntries(Obj: TObject): Pointer; deprecated;
...

➤ Listing 1: An enumerated type with explicitly assigned ordinality.

function printf(Format: PChar): Integer; cdecl; varargs;

➤ Listing 2: Using the new hint directives.

➤ Listing 3: Importing a C routine that takes a variable number of
arguments.

{$MESSAGE HINT 'Remember to eat'}
{$MESSAGE WARN 'Say no to rugs'}
{$MESSAGE ERROR 'D''oh!'}
{$MESSAGE FATAL 'Knucklehead'}

➤ Listing 4: Custom compiler messages.

program Project1;
uses
Windows, Forms,
Unit1 in 'Unit1.pas' {Form1};

{$SetPEFlags IMAGE_FILE_AGGRESIVE_WS_TRIM or IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP}
{$R *.res}
begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

➤ Listing 5: Setting PE file
header bits.

July 2001 The Delphi Magazine 67

introduces a fourth data access
technology: dbExpress.

dbExpress is a lightweight,
cross-platform set of database
drivers that provide fast access to
SQL database servers, and is pro-
vided with both Delphi 6 and Kylix.
The dbExpress Palette page has the
basic TDataSet descendants that
interact with the driver that you’d
expect (TSQLTable, TSQLQuery, TSQL-
StoredProc and TSQLDataSet).

Deployment involves distribut-
ing the single driver DLL and a text
connection configuration file, or
compiling everything into your
executable for simplicity.

dbExpress supports multiple
transactions across a single con-
nection and uses unidirectional
datasets with no inherent client
buffering, for efficiency. However,
you can connect a dbExpress
dataset to a client dataset to get
buffering and bi-directional move-
ment if needed. In fact a
TSQLClientDataSet is ready and
waiting for you to use. This compo-
nent wraps up a TSQLDataSet,
TDataSetProvider and TClientData-
Set so you needn’t worry about
connecting these components
together: it is just about visible in
the data module in Figure 4.

Other changes in the database
offering include an update to
TUpdateSQL, which can now be used
against multiple datasets (and they
can be any type of dataset now, not
just BDE datasets). Also, TClient-
DataSethas a new XMLDataproperty
which gives access to its data

packet in XML format (the original
Dataproperty gives the data packet
in an internal binary format).

Whilst on the subject of TClient-
DataSet, I should point out that
Borland is pushing the trade-
marked term MyBase as a personal
XML database engine. MyBase is
just a made up name to describe
the ability of any client dataset to
work in briefcase applications.
Also, as client datasets can store
their data (which can be imported
from any dataset) either in propri-
etary binary format or in XML, it
encourages its use as a ‘database-
engine-in-a-component’ for light-
weight single-file applications,
supporting popular data types,
including BLObs.

Actions
So what’s new in the realm of
actions? Quite a lot, as it turns out.
All actions have additional proper-
ties, that allow you to specify a
secondary shortcut and a group
index, amongst other things.

Also, there are three dozen new
standard actions to choose from,
including some which are dedi-
cated to modifying various attrib-
utes in a rich edit control and some
dedicated to manipulating list
boxes (for example clear selection,
copy selection, move selection).
They also include some related to
the internet (such as browse URL

or send mail) and some related to
common File menu operations
(such as exit and open).

The main change here is the
introduction of components that
allow you to visually lay out
actions on dedicated versions of
toolbars and menu bars using the
new action manager component.
Infrequently used menu items set
up in this manner can be hidden in
the same way as in the Windows
2000 Start menu. You are given
control over the background pat-
tern, bitmap or colour of the
toolbars, menu bar and menus,
and can even make banners that
go up the side of a menu (again, like
the Windows Startmenu). Figure 9
shows a demo application with a
bitmap tiled across the menu bar,
and another bitmap used as a left
hand banner in the Edit menu.

Custom Variants
The support code for Variant vari-
ables has been moved into the
Variants unit and the code has
been made portable to other plat-
forms (meaning Variants are avail-
able in Kylix). Additionally, whilst
making this change, they added in
support to allow a Variant to take
custom data types. As an example,
the VarCmplx unit implements a
custom Variant for complex num-
bers. Also, in the Enterprise Edi-
tion, the SqlTimSt unit implements
a custom Variant for TSQLTimeStamp
values, the type used by
dbExpress database drivers to
represent date/time information.

RTL
As well as the introduction of the
new Variants support unit, there
are a number of other additions to
the RTL. A lot of work has been put
into making a large number of
conversion routines for various

const
MyConst = 10;

{$IF Defined(WIN32) and Declared(UsingVCL)}
//code that manipulates the VCL

{$IFEND}
{$IF Defined(WIN32) and (MyConst > 9)}
//more code

{$IFEND}

➤ Listing 6: Using the new
conditional compilation
syntax.

➤ Figure 8: The enhanced COM
object wizard.

68 The Delphi Magazine Issue 71

measurements. The ConvUtils unit
contains the conversion registra-
tion routines (all conversions are
centrally registered so that they
can be easily managed). Most of
the actual conversions are imple-
mented in StdConvs but additional
conversions for translating to and
from the Euro currency can be
found in EuroConv.

A demo application uses the con-
version management routines in
ConvUtils to iterate through and
list them all on a form, allowing you
to test them out. Figure 10 shows a
number of distance conversions,
listing the equivalent of one light
year in various other units.

StrUtils is another new unit
which contains a bunch of new
string manipulation routines,
including routines that deal with
Soundex. For example, AnsiResemb-
lesText returns True if two strings
are similar, using a Soundex algo-
rithm by default, but this can be
switched to some other kind of
algorithm if needed.

DateUtils introduces a mass of
new ISO 8601 compliant date/time
manipulation routines, including
DaysBetween, EndOfADay, JulianDa-
teToDateTime and IsInLeapYear: I
counted more than 150 routines in
total.

The old Math unit has also been
enhanced. Firstly, all Extended
arguments are now passed as const
parameters for efficiency. But
there are also many new routines
present, such as angle unit conver-
sions, hyperbolic functions and
inverses, Infinity and NaN testing,
floating point comparisons, sign
reporters, random values from a
specified ranges, easy-to-use con-
ditional functions and FPU excep-
tion, precision and rounding
management routines.

VCL
Now we turn our attention
to the VCL to see what else
has changed (we’ve
already seen all the new
classes related to web ser-
vices, actions and data-
bases). The Additional

page of the Component Palette is
host to a group of new custom com-
ponents. The first is TValueList-
Editor, which presents the user
with a way of viewing or editing
string lists with the form
Name=Value. Rather like the IDE’s
Object Inspector, you can let the
user edit the string, provide a drop
down list of values, or provide a
dialog in which they can edit the
string.

Next up is TLabeledEdit. This is a
simple compound component
made of a TLabel and a TEdit, but
solves a lot of tedious setup in
many developers’ applications.
The last new component on this
page is the TColorBox: a combobox
for choosing a colour that looks
just like the Color property editor
on the Object Inspector.

On the Win32 Palette page, the
sole addition is TComboBoxEx, which
supports extended combobox
functionality, such as images on
the list entries and indentation of
the entries (see Figure 11).

On the Samples page of the Pal-
ette, there are four new Shell Con-
trols, which are intended to
replace the old directory naviga-
tion and file selection compo-
nents on the Win 3.1page [At long
last! Ed]. You can readily link the
three visual components
together to make a Windows
Explorer lookalike, complete
with popup menus and icons.
The fourth component is a
change notifier and alerts you
when files are renamed or
deleted, etc.

Various components have had
additional properties added.
Here is a list of some of them. All

listbox-based classes now have a
new AutoComplete property, which
makes them automatically com-
plete words that the user types by
selecting the first item that begins
with the currently typed string.
The listbox component itself also
supports acting as a virtual listbox
(where the items are stored else-
where). Treeviews and listviews
make it easier for developers to
add custom nodes inherited from
the default node type. The header
control supports column dragging
and allows you to sort columns
when their header is clicked.

Toolbar components have a
Menu property which makes them
automatically absorb all the items
from a menu component and repli-
cate its layout. Forms support
transparency and translucency
thanks to the new AlphaBlend, Alp-
haBlendValue, TransparentColor
and TransparentColorValueproper-
ties. The containers unit now
defines TBucketList and TObject-
BucketList as simple hash tables,
and TStringList now supports
case sensitivity. Also, THashed-
StringList is a string list that uses
a hash table for efficient string
location.

Finally in this list, TApplication
has a new event. OnSettingChange
reacts to changes in system-wide
settings and gives all the pertinent
information to the event handler.

Components now support pub-
lished interface properties which
will show up in the Object Inspec-
tor, so long as the interface is

➤ Figure 9:
Action bands in action.

➤ Figure 10: The conversion
demo program.

July 2001 The Delphi Magazine 69

implemented by a component that
uses the new Component Interface
Reference architecture. Also, com-
ponents can now own their own
sub-components and still have
the sub-component properties
streamed out to form files.

Translation Tools
There’s not too much to say about
the internationalisation support in
Delphi 6. It’s similar to the support
in Delphi 5, but the old ITE term
has been replaced by the term
Translation Tools. This is probably
because the tools are not so much
integrated into the IDE any longer,
but run from an external utility.
The new external executable is
called the External Translation
Manager (ETM). This can be
shipped to your translators
around the world without worry-
ing about getting them a full Delphi
development licence.

The ETM has a number of
enhancements over the ITE. For
instance it has a form viewer/
designer available to allow transla-
tors to both view and resize the
form and its components as trans-
lations are made. You can see the
form viewer being used to look at a
form translated into German in
Figure 12.

Hardware Requirements
I should mention that because
there is a whole lot of new stuff in
the product, a full install of the
Enterprise Edition now takes
350Mb (though that’s without
VisiBroker, the BDE, the sample
images and the Win32 SDK help
files (which total about 100Mb).
The Professional Edition will eat up
260Mb by itself and the Personal
Edition occupies 160Mb with a full
install.

I should probably also mention
that, because of its larger size, the
performance of the IDE is poorer
than the previous version. If you
are going to upgrade to Delphi 6, it
might also be time to look at
upgrading your hardware.

To give you an idea, on my old
300MHz Pentium II desktop
machine with 256Mb RAM running
Windows 98, it takes just under one
full minute to start Delphi 6 Enter-
prise Edition after a fresh reboot
with no other applications run-
ning. However, on my newer
850MHz Pentium III laptop, also
with 256Mb RAM, but running Win-
dows 2000, it starts in under 20 sec-
onds. Make no mistake, this is a
large product and it warrants some
decent hardware to run on.

Note that the hardware require-
ments from Borland state that you
need a Pentium 166MHz with 64Mb
RAM (snigger!), although they rec-
ommend at least a 400MHz PII with
128Mb RAM.

Another couple of points worth
noting include the fact that Win-
dows 95 is no longer an officially
supported platform (the data
sheet lists Windows Me, Windows
98, Windows 2000 and Windows NT
4.0 Service Pack 5 or later).

Also, the massive amount of help
supplied (at least in the Enterprise
Edition) overflows the WinHelp
index limit on Windows 95/98/Me,
meaning you see nothing in the
Index tab of the help system. If you
are still developing on Windows
95/98, perhaps it is time to move
over to Windows 2000. Having
done it myself, I can assure you
that it’s not that painful.

Pricing
The product is getting
pricier as versions
come and go. Delphi 6
Enterprise Edition has
an RRP of £1,999 with
an upgrade RRP of
£1,379. The Profes-
sional Edition has an
RRP of £699, with an
upgrade RRP of £269.

Finally, the Personal Edition has an
RRP of £79. All excluding VAT of
course. However, it is possible to
get it cheaper elsewhere: check
your favourite dealer’s prices.

Conclusion
Delphi 6 is a whopper (particularly
the Enterprise Edition), and it
comes with a price tag to match. If
you work for a large company,
need to develop enterprise appli-
cations calling on web services, or
rapidly build web server applica-
tions using WebSnap, then I’d
imagine the price won’t be too
much of an issue.

But for lone developers who do
not need all the additional stuff in
the Enterprise Edition, the ques-
tion is: does Delphi 6 Professional
Edition offer enough to justify the
£270 upgrade price tag? In short,
assuming you have the hardware
for it, I think the answer must be
yes. Even for newcomers, for a
product so rich in productivity fea-
tures, it sounds good value to me.

The only worrying thought is
that, with so many new features
added to this version, how reliable
and stable will it be? Time will tell,
and hopefully Borland will be
quick on the ball to issue updates
as and when they are needed.

Now over to Dave for those
cross-platform issues...

Brian Long is a freelance trainer
and problem solver specialising in
Delphi, Kylix and C++Builder
work. Visit www.blong.com or
email him on brian@blong.com

Copyright ©2001 Brian Long

➤ Figure 11: The TComboBoxEx
component.

➤ Figure 12:
Translating a form
into German.

	BizSnap
	WebSnap
	DataSnap
	CORBA
	IDE
	Compiler
	COM
	Database
	Actions
	Custom Variants
	RTL
	VCL
	Translation Tools
	Hardware Requirements
	Pricing
	Conclusion

